

# Eje nervado rotativo Tipo de cojinete con soporte Modelo LTR-A Anillo exterior de la brida Retén Retención Tuerca nervada Espaciador Retención Eje nervado

Fig.1 Estructura del modelo LTR de eje nervado rotativo

| Punto de selección                             | A3-6         |
|------------------------------------------------|--------------|
| Punto de diseño                                | A3-117       |
| Opciones                                       | A3-120       |
| Descripción del modelo                         | A3-122       |
| Precauciones de uso                            | A3-123       |
| Accesorios para la lubricación                 | A24-1        |
| Procedimiento de montaje y mantenimiento       | <b>B3-30</b> |
| Características transversales del eje estriado | A3-17        |
| Factor equivalente                             | A3-27        |
| Juego en la dirección de rotación              | A3-30        |
| Estándares de precisión                        | A3-34        |
| Longitud máxima de fabricación por precisión   | A3-115       |

# 



# Estructura y características

En modelo LTR de eje nervado rotativo, el eje nervado tiene tres crestas en la circunferencia y a ambos lados de cada cresta se disponen dos hileras de bolas (seis hileras en total) que sostienen las crestas para aplicar una carga previa razonable.

Los canales de bolas con contacto angular se mecanizan sobre la superficie exterior de la tuerca nervada para formar los cojinetes con soporte, lo que permite lograr que todo el cuerpo tenga un diseño compacto y liviano.

Las hileras de bolas están sostenidas en una retención de resina especial para que giren y circulen de manera uniforme. Con este diseño, las bolas no caerán aunque se quite el eje nervado.

Además, se encuentra disponible un retén especial para evitar la entrada de material extraño a los cojinetes con soporte.

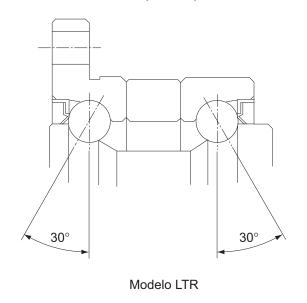
### [Sin retroceso angular]

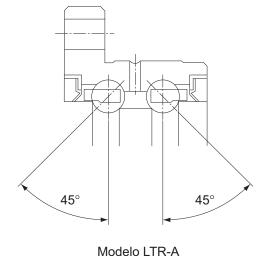
Dos hileras de bolas, una en frente de la otra, sostienen una cresta, formada en la circunferencia de la tuerca nervada, en un ángulo de contacto de 20° para proporcionar una precarga en una estructura de contacto angular. De esta manera, se elimina el retroceso angular en la dirección de rotación y se aumenta la rigidez.

### [Diseño compacto]

La tuerca nervada está integrada con los cojinetes con soporte, lo que permite lograr un diseño compacto de gran precisión.

### [Instalación sencilla]


Este eje nervado puede instalarse fácilmente con sólo conectarlo a la caja con tornillos.


### [Gran rigidez]

Debido a que el ángulo de contacto es elevado y se proporciona una precarga apropiada, se alcanza una gran rigidez contra el par de torsión y el momento.

El cojinete con soporte tiene un ángulo de contacto de 30° para garantizar gran rigidez contra una carga de momento, y lograr un soporte rígido para el eje.

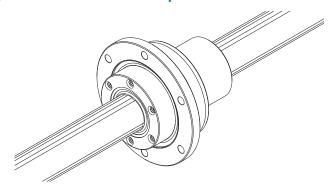
El modelo LTR-A, un tipo compacto del LTR, tiene un ángulo de contacto de 45°.





WOOD ETTER

1111 ▲ 3-105



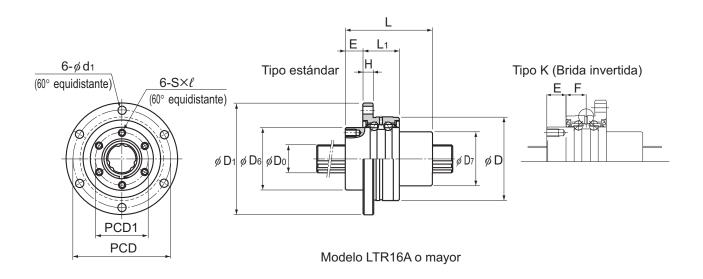

# Tipos y características

# Modelo LTR-A de eje nervado

Un tipo compacto, incluso más pequeño que LTR.

# Tabla de especificación⇒**△3-108**




# [Tipos de ejes nervados]

Para obtener más detalles, consulte A3-77.

A3-106 THK



# Modelo LTR-A, tipo compacto



|                           | Dimensiones de la tuerca nervada |                   |               |                            |          |                |    |                |                  |        |                                            |    |     |      |        |
|---------------------------|----------------------------------|-------------------|---------------|----------------------------|----------|----------------|----|----------------|------------------|--------|--------------------------------------------|----|-----|------|--------|
| Descripción<br>del modelo | _                                | ámetro<br>kterior | Longi-<br>tud | Diámetro<br>de la<br>brida |          |                |    |                | Tipo<br>estándar | Tipo K | Posición del<br>orificio de<br>lubricación |    |     |      |        |
|                           | D                                | Toleran-<br>cia   | L             | D₁                         | D₀<br>h7 | D <sub>7</sub> | Н  | L <sub>1</sub> | Е                | Е      | F                                          | E₁ | PCD | PCD1 | S×ℓ    |
| LTR8 A                    | 32                               |                   | 25            | 44                         | 24       | 16             | 3  | 10,5           | 6                | 8,5    | 4                                          | 3  | 38  | 19   | M2,6×3 |
| LTR10 A                   | 36                               | -0,009<br>-0,025  | 33            | 48                         | 28       | 21             | 3  | 10,5           | 9                | 11,5   | 4                                          | _  | 42  | 23   | M3×4   |
| LTR16 A                   | 48                               |                   | 50            | 64                         | 36       | 31             | 6  | 21             | 10               | 10     | 10,5                                       |    | 56  | 30   | M4×6   |
| LTR20 A                   | 56                               |                   | 63            | 72                         | 43,5     | 35             | 6  | 21             | 12               | 12     | 10,5                                       |    | 64  | 36   | M5×8   |
| LTR25 A                   | 66                               | -0,010<br>-0,029  | 71            | 86                         | 52       | 42             | 7  | 25             | 13               | 13     | 12,5                                       | _  | 75  | 44   | M5×8   |
| LTR32 A                   | 78                               | ,                 | 80            | 103                        | 63       | 52             | 8  | 25             | 17               | 17     | 12,5                                       |    | 89  | 54   | M6×10  |
| LTR40 A                   | 100                              | -0,012<br>-0,034  | 100           | 130                        | 79,5     | 64             | 10 | 33             | 20               | 20     | 16,5                                       | _  | 113 | 68   | M6×10  |

### Código del modelo

.TR32

Descripción Símbolo de del modelo orientación de la brida(\*1)

compacto Símbolo de la precarga en la dirección de rotación.(\*4)

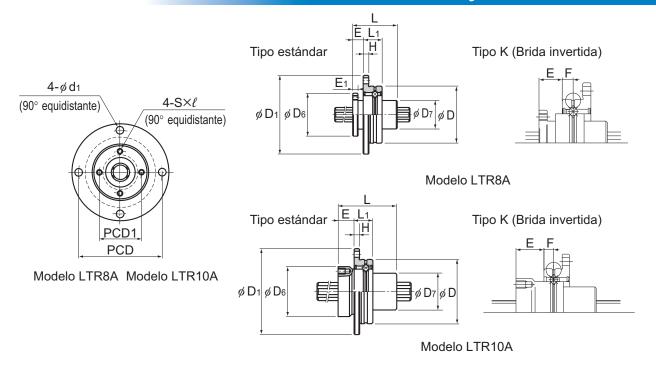
Tipo de soporte Símbolo de precisión Símbolo para el eje estriado (\*6)

Cantidad de tuercas nervadas en un eje (sin símbolo para una tuerca) la contaminación

Símbolo del accesorio de protección contra

Símbolo del accesorio de protección contra de la tuerca nervada(\*2) la contaminación de los cojinetes con soporte(\*3) Longitud total del eje nervado (\*7) (en mm)

(\*2) Consulte A3-120. (\*3) Consulte A3-120. (\*4) Consulte A3-30. (\*5) Consulte A3-34. (\*6) Consulte A3-112. (\*7) Consulte A3-115.

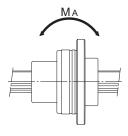

(\*1) Sin símbolo: estándar K: brida invertida

A3-108

(\*5)

https://tech.thk.com






Unidad: mm

|     | Diámetro<br>del eje<br>nervado |                     | Capacida<br>de torsió |            | Capaci<br>carga | dad de<br>básica | Momento estático admisible | Capacidad de carga<br>básicadel cojinete con<br>soporte |          | Ma                    | ısa                  |  |  |
|-----|--------------------------------|---------------------|-----------------------|------------|-----------------|------------------|----------------------------|---------------------------------------------------------|----------|-----------------------|----------------------|--|--|
|     |                                |                     |                       |            |                 |                  |                            |                                                         |          |                       |                      |  |  |
| d₁  | D₀<br>h7                       | Hileras<br>de bolas | C <sub>⊤</sub><br>N-m | С₀т<br>N-m | C<br>kN         | C₀<br>kN         | M <sub>A</sub> **<br>N-m   | C<br>kN                                                 | C₀<br>kN | Tuerca estriada<br>kg | Eje estriado<br>kg/m |  |  |
| 3,4 | 8                              | 4                   | 1,96                  | 2,94       | 1,47            | 2,55             | 5,9                        | 0,69                                                    | 0,24     | 0,08                  | 0,4                  |  |  |
| 3,4 | 10                             | 4                   | 3,92                  | 7,84       | 2,84            | 4,9              | 15,7                       | 0,77                                                    | 0,3      | 0,13                  | 0,62                 |  |  |
| 4,5 | 16                             | 6                   | 31,3                  | 34,3       | 7,06            | 12,6             | 67,6                       | 6,7                                                     | 6,4      | 0,35                  | 1,6                  |  |  |
| 4,5 | 20                             | 6                   | 56,8                  | 55,8       | 10,2            | 17,8             | 118                        | 7,4                                                     | 7,8      | 0,51                  | 2,5                  |  |  |
| 5,5 | 25                             | 6                   | 105                   | 103        | 15,2            | 25,8             | 210                        | 9,7                                                     | 10,6     | 0,79                  | 3,9                  |  |  |
| 6,6 | 32                             | 6                   | 180                   | 157        | 20,5            | 34               | 290                        | 10,5                                                    | 12,5     | 1,25                  | 5,6                  |  |  |
| 9   | 40                             | 6                   | 418                   | 377        | 37,8            | 60,4             | 687                        | 16,5                                                    | 20,7     | 2,51                  | 9,9                  |  |  |

Nota) \*\*MA indica el valor del momento admisible en la dirección axial cuando se utiliza una sola tuerca nervada, como se muestra en la siguiente figura.
Para obtener más detalles sobre las longitudes máximas de los ejes que se incluyen en los ejes nervados por preci-

sión, consulte A3-115.



Opciones⇒A3-120





# Eje nervado

Los ejes nervados se dividen por su forma en eje nervado macizo de precisión, eje nervado especial y eje nervado hueco (tipo K y N), como se describe en **A3-77**.

Debido a que la producción de un eje nervado con una forma específica se realiza a pedido, proporcione un dibujo de la forma deseada cuando solicite un presupuesto o realice un pedido.

### [Forma de sección del eje nervado]

Tabla1 muestra la forma de sección de un eje nervado. Si los extremos del eje nervado deben ser cilíndricos, no debe excederse el valor del diámetro menor ( $\phi$ d) si es posible.

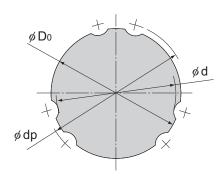
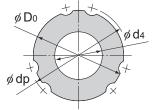
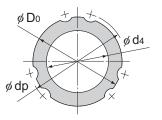



Tabla1 Forma de sección del eje nervado


Unidad: mm


| Diámetro de eje<br>nominal           | 8   | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 60   |
|--------------------------------------|-----|------|------|------|------|------|------|------|------|
| Diámetro menor φ d                   | 7   | 8,5  | 14,5 | 18,5 | 23   | 30   | 37,5 | 46,5 | 56,5 |
| Diámetro mayor ø D₀ h7               | 8   | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 60   |
| Diámetro de bola centro a centro фdp | 9,3 | 11,5 | 17,8 | 22,1 | 27,6 | 35,2 | 44,2 | 55,2 | 66,3 |
| Masa (kg/m)                          | 0,4 | 0,62 | 1,6  | 2,5  | 3,9  | 5,6  | 9,9  | 15,5 | 22,3 |

### [Forma del orificio del eje nervado hueco estándar]

Tabla2 muestra la forma de orificio del eje nervado hueco estándar (tipo K y N).

Utilice esta tabla cuando deba cubrir ciertos requerimientos, como tubería, cableado, ventilación de aire o reducción de peso.





Tipo K (Grueso)

Tipo N (Delgado)

Tabla2 Forma de sección del eje nervado hueco estándar

Unidad: mm

| Diámetro de      | e eje nominal                 | 8    | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 60   |
|------------------|-------------------------------|------|------|------|------|------|------|------|------|------|
| Diámetro mayor   |                               | 8    | 10   | 16   | 20   | 25   | 32   | 40   | 50   | 60   |
| Diámetro de bola | centro a centro $\phi$ dp     | 9,3  | 11,5 | 17,8 | 22,1 | 27,6 | 35,2 | 44,2 | 55,2 | 66,3 |
| Tipo K           | Diámetro del<br>orificio φ d₄ | 3    | 4    | 7    | 10   | 12   | 18   | 22   | 25   | 32   |
|                  | Masa (kg/m)                   | 0,35 | 0,52 | 1,3  | 1,8  | 3    | 4,3  | 6,9  | 11,6 | 16   |
| Tipo N           | Diámetro del<br>orificio φ d₄ | _    | _    | 11   | 14   | 18   | 23   | 29   | 36   | _    |
|                  | Masa (kg/m)                   | _    | _    | 0,8  | 1,3  | 1,9  | 3,1  | 4,7  | 7,4  | _    |

Nota) El eje nervado hueco estándar se divide en dos tipos K y N. Indique "K" o "N" al final del código de modelo para poder distinguirlos cuando realice el pedido.

# A3-112 THK



## [Invlinación de los extremos del eje nervado]

Para facilitar la inserción del eje estriado en la tuerca estriada, los extremos del eje suelen biselarse con las dimensiones que se indican a continuación, salvo que se especifique lo contrario. Los extremos están biselados ya sea si están usados, como ocurre con los extremos escalonados,

roscados o perforados, o no usados, como ocurre con los soportes voladizos.

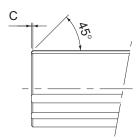



Tabla3 Dimensiones de biselado de los ejes estriados de los modelos LTR-A y LTR

Unidad: mm

| Diámetro del eje nominal | 8   | 10  | 16  | 20  | 25  | 32  | 40  | 50  | 60  |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Biselado C               | 0,5 | 0,5 | 0,5 | 0,5 | 0,5 | 0,5 | 1,0 | 1,0 | 2,0 |

### [Longitud del área imperfecta de un eje nervado especial]

Si el área media o el extremo de un eje nervado debe ser más ancho que el diámetro menor  $(\phi d)$ , se requiere un área de eje imperfecta para asegurar una depresión por rectificación. Tabla4 muestra la relación entre la longitud de la sección incompleta (S) y el diámetro de la brida  $(\phi df)$ . (Esta tabla no aplica para longitudes totales de 1500 mm o mayores. Póngase en contacto con THK para obtener más detalles.)

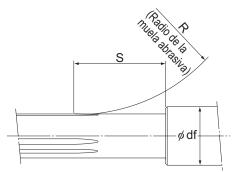



Tabla4 Longitud del área de eje imperfecta: S

Unidad: mm

| Diámetro<br>de la brida <i>∮</i> df | 6 | 8  | 10 | 13 | 16 | 20 | 25 | 30 | 40 | 50 | 60 | 80  | 100 | 120 | 140 | 160 |
|-------------------------------------|---|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| Diámetro de eje nominal             |   | 0  | 10 | 13 | 10 | 20 | 23 | 30 | 4  | 30 | 00 | 00  | 100 | 120 | 140 | 100 |
| 8                                   | _ | 25 | 29 | 35 | 41 | _  | _  | _  | _  | _  | _  | _   | _   | _   | _   | _   |
| 10                                  | _ | -  | 26 | 31 | 38 | 45 | _  | _  | _  | _  | _  | _   | _   | _   | _   | _   |
| 16                                  | _ | _  | _  | _  | 36 | 47 | 58 | 67 | _  | _  | _  | _   | _   | _   | _   | _   |
| 20                                  | _ | _  | _  | _  | _  | 37 | 50 | 60 | 76 | _  | _  | _   | _   | _   | _   | _   |
| 25                                  | _ | _  | _  | _  | _  | _  | 38 | 51 | 72 | 88 | _  | _   | _   | _   | _   | _   |
| 32                                  | _ | _  | _  | _  | _  | _  | _  | _  | 40 | 75 | 88 | 109 | _   | _   | _   | _   |
| 40                                  | _ | _  | _  | _  | _  | _  | _  | _  | 42 | 63 | 81 | 107 | _   | _   | _   | _   |
| 50                                  | _ | _  | _  | _  | _  | _  | _  | _  | _  | 45 | 65 | 96  | 118 | _   | _   | _   |
| 60                                  |   |    |    |    |    |    |    |    | _  |    | 50 | 87  | 114 | 134 | _   |     |



# Velocidad de rotación admisible para ejes nervados rotativos

Para el modelo LTR de ejes nervados rotativos, la velocidad se restringe al menor valor que resulte entre la velocidad de rotación admisible para el cojinete con soporte y la velocidad crítica del eje. Cuando utilice el producto, no exceda la velocidad de rotación admisible.

Tabla5 Velocidad de rotación admisible para el modelo LTR

|                           | Tabla5 Velocidad de rotación admisible p | ara el modelo LTR    | Unidad: min-1         |  |  |  |  |  |  |  |  |
|---------------------------|------------------------------------------|----------------------|-----------------------|--|--|--|--|--|--|--|--|
|                           | Velocidad de rotación admisible          |                      |                       |  |  |  |  |  |  |  |  |
| Descripción<br>del modelo | Eje nervado                              | Cojinete co          | on soporte            |  |  |  |  |  |  |  |  |
| del medele                | Cálculo mediante la longitud del eje     | Grasa de lubricación | Aceite de lubricación |  |  |  |  |  |  |  |  |
| LTR16                     |                                          | 4000                 | 5400                  |  |  |  |  |  |  |  |  |
| LTR20                     |                                          | 3600                 | 4900                  |  |  |  |  |  |  |  |  |
| LTR25                     |                                          | 3200                 | 4300                  |  |  |  |  |  |  |  |  |
| LTR32                     | consulte A3-16.                          | 2400                 | 3300                  |  |  |  |  |  |  |  |  |
| LTR40                     |                                          | 2000                 | 2700                  |  |  |  |  |  |  |  |  |
| LTR50                     |                                          | 1600                 | 2200                  |  |  |  |  |  |  |  |  |
| LTR60                     |                                          | 1400                 | 2000                  |  |  |  |  |  |  |  |  |

Tabla6 Velocidad de rotación admisible para el modelo LTR-A

Unidad: min-1

|                           | Velocidad de ro                      | tación admisible     |                       |  |  |  |
|---------------------------|--------------------------------------|----------------------|-----------------------|--|--|--|
| Descripción<br>del modelo | Eje nervado                          | Cojinete con soporte |                       |  |  |  |
| doi modolo                | Cálculo mediante la longitud del eje | Grasa de lubricación | Aceite de lubricación |  |  |  |
| LTR8A                     |                                      | 6900                 | 9300                  |  |  |  |
| LTR10A                    |                                      | 5900                 | 7900                  |  |  |  |
| LTR16A                    |                                      | 4000                 | 5400                  |  |  |  |
| LTR20A                    | consulte A3-16.                      | 3600                 | 4900                  |  |  |  |
| LTR25A                    |                                      | 3200                 | 4300                  |  |  |  |
| LTR32A                    |                                      | 2400                 | 3300                  |  |  |  |
| LTR40A                    |                                      | 2000                 | 2700                  |  |  |  |

A3-114 



# Diagrama de dimensiones, tabla de dimensiones

Longitud máxima de fabricación por precisión

# Longitud máxima de fabricación por precisión

Tabla1, Tabla2, Tabla3 y Tabla4 muestran las longitudes máximas de fabricación de los ejes que se incluyen en los ejes nervados por precisión.

Tabla1 La longitud máxima de fabricación de los modelos SLS, SLS-L y SLF

Unidad: mm

| Diámetro de eje neminal | Precisión                  |                        |                        |  |  |  |  |  |  |
|-------------------------|----------------------------|------------------------|------------------------|--|--|--|--|--|--|
| Diámetro de eje nominal | Nivel normal (sin símbolo) | Nivel de precisión (H) | Nivel de precisión (P) |  |  |  |  |  |  |
| 25                      | 2000                       | 1500                   | 1000                   |  |  |  |  |  |  |
| 30                      | 2000                       | 1600                   | 1250                   |  |  |  |  |  |  |
| 40                      | 2000                       | 2000                   | 1500                   |  |  |  |  |  |  |
| 50                      | 3000                       | 2000                   | 1500                   |  |  |  |  |  |  |
| 60                      | 4000                       | 2000                   | 2000                   |  |  |  |  |  |  |
| 70                      | 4000                       | 2000                   | 2000                   |  |  |  |  |  |  |
| 80                      | 4000                       | 2000                   | 2000                   |  |  |  |  |  |  |
| 100                     | 4000                       | 3000                   | 3000                   |  |  |  |  |  |  |

Tabla2 Longitud máxima de fabricación de los modelos LBS, LBST, LBF, LBR, LBH, LBG y LBGT por precisión
Unidad: mm

| Diámetro de sia neminal |                            | Precisión              |                        |
|-------------------------|----------------------------|------------------------|------------------------|
| Diámetro de eje nominal | Nivel normal (sin símbolo) | Nivel de precisión (H) | Nivel de precisión (P) |
| 6                       | 200                        | 150                    | 100                    |
| 8                       | 600                        | 200                    | 150                    |
| 10                      | 600                        | 400                    | 300                    |
| 15                      | 1800                       | 600                    | 600                    |
| 20                      | 1800                       | 700                    | 700                    |
| 25                      | 3000                       | 1400                   | 1400                   |
| 30                      | 3000                       | 1400                   | 1400                   |
| 40                      | 3000                       | 1400                   | 1400                   |
| 50                      | 3000                       | 1400                   | 1400                   |
| 60                      | 3800                       | 2500                   | 2000                   |
| 70                      | 3800                       | 2500                   | 2000                   |
| 85                      | 3800                       | 3000                   | 3000                   |
| 100                     | 4000                       | 3000                   | 3000                   |
| 120                     | 3000                       | 3000                   | 3000                   |
| 150                     | 3000                       | 3000                   | 3000                   |

**THK A3-115** 



Tabla3 Longitud de fabricación máxima de los modelos LT-X y LF-X según la precisión

Unidad: mm

| Diámetro del eje neminal |                            | Precisión              |                        |
|--------------------------|----------------------------|------------------------|------------------------|
| Diámetro del eje nominal | Nivel normal (sin símbolo) | Nivel de precisión (H) | Nivel de precisión (P) |
| 4                        | 200                        | 200                    | 200                    |
| 5                        | 250                        | 200                    | 200                    |
| 6                        | 315                        | 250                    | 200                    |
| 8                        | 500                        | 400                    | 315                    |
| 10                       | 1000                       | 630                    | 500                    |
| 13                       | 1000                       | 800                    | 630                    |
| 16                       | 2000                       | 1000                   | 1000                   |
| 20                       | 2000                       | 1500                   | 1000                   |
| 25                       | 3000                       | 1500                   | 1000                   |
| 30                       | 3000                       | 1600                   | 1250                   |

Tabla4 Longitud máxima de fabricación de los modelos LT, LF, LTR y LTR-A por precisión

Unidad: mm

| Diámetro de eje nominal | Precisión                  |                        |                        |
|-------------------------|----------------------------|------------------------|------------------------|
|                         | Nivel normal (sin símbolo) | Nivel de precisión (H) | Nivel de precisión (P) |
| 4                       | 600                        | 200                    | 200                    |
| 5                       | 600                        | 315                    | 200                    |
| 6                       | 600                        | 400                    | 315                    |
| 8                       | 1000                       | 500                    | 400                    |
| 10                      | 1000                       | 630                    | 500                    |
| 13                      | 1000                       | 800                    | 630                    |
| 16                      | 2000                       | 1000                   | 1000                   |
| 20                      | 2000                       | 1500                   | 1000                   |
| 25                      | 3000                       | 1500                   | 1000                   |
| 30                      | 3000                       | 1600                   | 1250                   |
| 40                      | 3000                       | 2000                   | 1520                   |
| 50                      | 3000                       | 2000                   | 1500                   |
| 60                      | 4000                       | 2000                   | 2000                   |
| 80                      | 4000                       | 2000                   | 2000                   |
| 100                     | 4000                       | 3000                   | 3000                   |

▲3-116 冗狀

La longitud que se muestra en la tabla representa la longitud total del eje.
 Para los ejes huecos estándar (K), se aplican los valores de la tabla.
 Para los ejes huecos estándar (N), la longitud máxima disponible, tanto para los de nivel normal como para los de nivel de alta precisión, equivale a la longitud definida en el nivel de precisión de la tabla.