

# Eje nervado para par de torsión alto Modelo LBST Retén Retén Anillo elástico

Fig.1 Estructura del modelo LBS de eje nervado para par de torsión alto

| Punto de selección                             | A3-6          |
|------------------------------------------------|---------------|
| Punto de diseño                                | A3-117        |
| Opciones                                       | A3-120        |
| Descripción del modelo                         | A3-122        |
| Precauciones de uso                            | A3-123        |
| Accesorios para la lubricación                 | A24-1         |
| Procedimiento de montaje y mantenimiento       | <b>■3-30</b>  |
| Características transversales del eje estriado | A3-17         |
| Factor equivalente                             | A3-27         |
| Juego en la dirección de rotación              | A3-30         |
| Estándares de precisión                        | A3-34         |
| Longitud máxima de fabricación por precisión   | <b>A3-115</b> |

## △3-50 冗狀



## Estructura y características

En el eje nervado para par de torsión alto, el eje estriado posee tres crestas posicionadas de manera equidistante a 120° y a ambos lados de cada cresta, se colocan dos hileras de bolas (seis hileras en total) para sostener la cresta, como se muestra en Fig.1.

Las ranuras son muescas en R rectificado con precisión, cuyos diámetros son aproximados al diámetro de la bola. Cuando se genera un par de torsión desde el eje estriado o la tuerca estriada, las tres hileras de bolas en el lado de carga reciben el par de torsión de manera uniforme, y se determina automáticamente el centro de rotación. Cuando la rotación se invierte, las tres hileras de bolas restantes en el lado sin carga reciben el par de torsión.

Las hileras de bolas están sostenidas en una retén incorporada en la tuerca estriada para que giren y circulen uniformemente. Con este diseño, las bolas no se caerán aun si se retira el eje estriado de la tuerca.

#### [Sin retroceso angular]

Con el eje nervado para par de torsión alto, una sola tuerca estriada proporciona una precarga que elimina el retroceso angular y aumenta la rigidez.

A diferencia de los ejes nervados convencionales con muescas de arco circular o de arco gótico, el eje nervado para par de torsión alto elimina la necesidad de enroscar dos tuercas estriadas para proporcionar una precarga, lo que facilita lograr un diseño compacto.

#### [Posicionamiento preciso y gran rigidez]

Debido a que este modelo tiene un gran ángulo de contacto y proporciona una precarga desde una sola tuerca estriada, el desplazamiento inicial es mínimo y se logra gran rigidez y gran precisión de posicionamiento.

#### [Movimiento y rotación de alta velocidad]

Al adoptar una estructura con gran detención de grasa y una retén rígida, el eje nervado puede funcionar durante un largo período mediante la grasa de lubricación, aun cuando se desplace con un movimiento recto de alta velocidad. Debido a que la distancia en la dirección de radio es casi uniforme entre las bolas que reciben una carga y las que no, la fuerza centrífuga afecta levemente a las bolas y se alcanza un movimiento recto uniforme durante la rotación de alta velocidad.

#### [Diseño compacto]

A diferencia de los ejes nervados convencionales, las bolas que no reciben carga no circulan en la superf cie exterior de la tuerca estriada en este modelo. Como resultado, se reduce el diámetro exterior de la tuerca estriada y se logra un diseño compacto que ahorra espacio.

## [Tipo de retén de bolas]

La utilización de una retén previene que las bolas se caigan si se retira el eje estriado de la tuerca estriada.

#### [Puede utilizarse como casquillo lineal para cargas pesadas]

Debido a que las hileras se mecanizan en muescas en R cuyo diámetro es casi idéntico al del diámetro de las bolas, el área de contacto de la bola es grande, al igual que la capacidad de carga en la dirección radial.

#### [Los ejes dobles en paralelo pueden reemplazarse por un solo eje]

Debido a que un solo eje es capaz de recibir una carga en la dirección de par de torsión y la dirección radial, los ejes dobles en paralelo pueden reemplazarse por una configuración de un solo riel. De esta manera, se facilita la instalación y se obtiene un diseño que ahorra espacio.

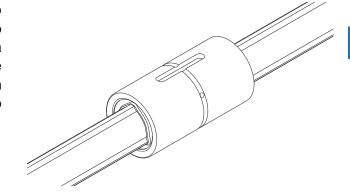
A3-51



## **Aplicaciones**

El eje nervado para par de torsión alto es un sistema de movimiento recto conf able utilizado en una amplia gama de aplicaciones, como las columnas y los brazos de robots industriales, sistema de carga automático, máquina de transferencia, sistemas de transporte automáticos, máquinas de molde de neumáticos, husillo de soldadora por puntos, eje guía de máquina de revestir automática de alta velocidad, máquina remachadora, enrollador de alambre, cabeza de trabajo de máquinas de electroerosión, Eje motor de husillo de máquina rectif cadora, engranajes de velocidad y ejes de indexación de precisión.

A3-52 T出版




## Tipos y características

# Modelo LBST de eje nervado de tipo cilíndrico (tipo de carga pesada)

Un tipo de carga pesada que tiene el mismo diámetro de la tuerca estriada que el modelo LBS, pero tiene una longitud de tuerca estriada más prolongada. Es óptimo para lugares donde el espacio es reducido, y donde se aplica un alto par de torsión y una carga descentrada o una de momento.

## Tabla de especificación⇒A3-60





## [Tipos de ejes estriados]

# Eje estriado macizo de precisión (tipo estándar)

El eje estriado se estira en frío y la ranura se rectifica con precisión. Se utiliza en combinación con una tuerca estriada.



# Eje estriado especial

THK fabrica, a pedido, un eje estriado con extremos más gruesos o un área media más gruesa a través de un procesamiento especial.



# Eje estriado hueco (tipo K)

Se encuentra disponible un eje estriado hueco estirado para ciertos requerimientos, como tubería, cableado, ventilación de aire y reducción de peso.



## Tolerancia de diámetro interior de la caja

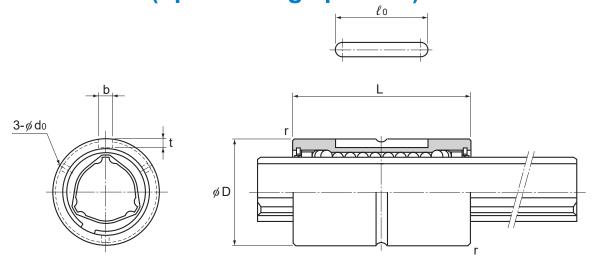

Cuando se conecta la tuerca estriada en la caja, suele recomendarse una conexión de transición. Si la precisión del eje nervado no debe ser muy elevada, también se aceptará una conexión con juego.

Tabla1 Tolerancia de diámetro interior de la caja

| Tolerancia de diámetro | Condiciones generales                | H7 |
|------------------------|--------------------------------------|----|
| interior de la caia    | Cuando el juego<br>debe ser reducida | J6 |



# Modelo LBST (tipo de carga pesada)



|             |      |                | Din | nensiones de la t | uerca est | triada         |                       |     |                |
|-------------|------|----------------|-----|-------------------|-----------|----------------|-----------------------|-----|----------------|
| Descripción | Diám | netro exterior |     | Longitud          | Dime      | nsiones o      | Orif cio de engrasado |     |                |
| del modelo  | D    | Tolerancia     | ا   | Tolerancia        | b<br>H8   | t<br>+0,1<br>0 | $\ell_{ m o}$         | r   | d <sub>0</sub> |
| ○● LBST 20  | 30   | 0              | 60  | 0<br>-0,2         | 4         | 2,5            | 26                    | 0,5 | 2              |
| ○● LBST 25  | 37   | -0,016         | 70  |                   | 5         | 3              | 33                    | 0,5 | 2              |
| ○● LBST 30  | 45   |                | 80  | 0                 | 7         | 4              | 41                    | 1   | 3              |
| ○● LBST 40  | 60   | 0              | 100 |                   | 10        | 4,5            | 55                    | 1   | 3              |
| ○● LBST 50  | 75   | -0,019         | 112 | -0,3              | 15        | 5              | 60                    | 1,5 | 4              |
| O LBST 60   | 90   |                | 127 |                   | 18        | 6              | 68                    | 1,5 | 4              |
| ○● LBST 70  | 100  | 0<br>-0,022    | 135 |                   | 18        | 6              | 68                    | 2   | 4              |
| ○● LBST 85  | 120  | 0,022          | 155 | 0                 | 20        | 7              | 80                    | 2,5 | 5              |
| ○ LBST 100  | 140  | 0              | 175 | -0,4              | 28        | 9              | 93                    | 3   | 5              |
| O LBST 120  | 160  | -0,025         | 200 | 0                 | 28        | 9              | 123                   | 3,5 | 6              |
| O LBST 150  | 205  | 0<br>-0,029    | 250 | -0,5              | 32        | 10             | 157                   | 3,5 | 6              |


Nota) : indica los códigos de modelo para los cuales se encuentran disponibles los tipos para alta temperatura (con retenes de metal; temperatura de servicio: hasta los 100°C).

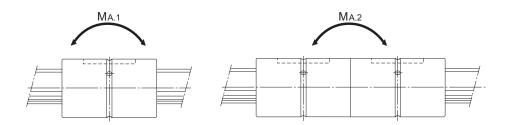
(Ejemplo) LBST25 A CM+400L H

Símbolo para alta temperatura

●: indica los códigos de modelos para los cuales se encuentran disponibles tipos de sello de f eltro (consulte ▲3-120). No se puede colocar un sello de f eltro en los modelos de eje nervado que utilizan retenes de metal.

#### Código del modelo




(\*1) Consulte A3-120. (\*2) Consulte A3-30. (\*3) Consulte A3-34. (\*4) Consulte A3-69. (\*5) Consulte A3-115.

**A3-60 证状** 

Para descargar los datos deseados, busque el número de modelo correspondiente en el sitio web técnico

https://tech.thk.com





Unidad: mm

| Capacidad de par                   | de torsión básica | Capacidad de car    | ga básica (radial) | Momento está                                | tico admisible | Masa                  |                      |  |
|------------------------------------|-------------------|---------------------|--------------------|---------------------------------------------|----------------|-----------------------|----------------------|--|
|                                    |                   |                     |                    |                                             |                |                       |                      |  |
| С <sub>т</sub> С <sub>от</sub> N-m |                   | C C <sub>0</sub> kN |                    | M <sub>A.1</sub> ** M <sub>A.2</sub> ** N-m |                | Tuerca estriada<br>kg | Eje estriado<br>kg/m |  |
| 90,2                               | 213               | 9,4                 | 20,1               | 103                                         | 632            | 0,17                  | 1,8                  |  |
| <br>176                            | 381               | 14,9                | 28,7               | 171                                         | 1060           | 0,29                  | 2,7                  |  |
| 312                                | 657               | 22,5                | 41,4               | 295                                         | 1740           | 0,5                   | 3,8                  |  |
| 696                                | 1420              | 37,1                | 66,9               | 586                                         | 3540           | 1,1                   | 6,8                  |  |
| 1290                               | 2500              | 55,1                | 94,1               | 941                                         | 5610           | 1,9                   | 10,6                 |  |
| 1870                               | 3830              | 66,2                | 121                | 1300                                        | 8280           | 3,3                   | 15,6                 |  |
| 3000                               | 6090              | 90,8                | 164                | 2080                                        | 11800          | 3,8                   | 21,3                 |  |
| 4740                               | 9550              | 119                 | 213                | 3180                                        | 17300          | 6,1                   | 32                   |  |
| 6460                               | 14400             | 137                 | 271                | 4410                                        | 25400          | 10,4                  | 45                   |  |
| 8380                               | 19400             | 148                 | 306                | 5490                                        | 32400          | 12,9                  | 69,5                 |  |
| 13900                              | 32200             | 196                 | 405                | 8060                                        | 55400          | 28                    | 116,6                |  |

Nota) \*\* M<sub>A.1</sub> indica el valor de momento admisible en la dirección axial cuando se utiliza una sola tuerca estriada, como se

entre sí, como se muestra en la f gura anterior. Para obtener más detalles sobre las longitudes máximas de los ejes que se incluyen en los ejes nervados por precisión, consulte A3-115.

muestra en la f gura anterior.

\*\*MA2 indica el valor del momento admisible en la dirección axial cuando se utilizan dos tuercas estriadas en contacto



## Eje estriado

Los ejes estriados se dividen por su forma en eje estriado macizo de precisión, eje estriado especial y eje estriado hueco (tipo K), como se describe en **A3-55**.

Debido a que la producción de un eje estriado con una forma específ ca se realiza bajo pedido, proporcione un dibujo de la forma deseada cuando solicite un presupuesto o realice un pedido.

## [Forma de sección del eje estriado]

Tabla2 muestra la forma de sección de un eje estriado. Si los extremos del eje estriado deben ser cilíndricos, no debe excederse el valor del diámetro menor ( $\phi$ d) si es posible.

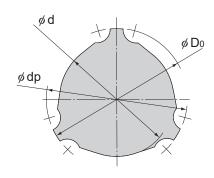



Tabla2 Forma de sección del eje estriado

Unidad: mm

| Diámetro de eje nominal              | 15   | 20   | 25   | 30   | 40   | 50   | 60   | 70   | 85 | 100 | 120  | 150   |
|--------------------------------------|------|------|------|------|------|------|------|------|----|-----|------|-------|
| Diámetro menor ød                    | 11,7 | 15,3 | 19,5 | 22,5 | 31   | 39   | 46,5 | 54,5 | 67 | 81  | 101  | 130   |
| Diámetro mayor <i>φ</i> D₀           | 14,5 | 19,7 | 24,5 | 29,6 | 39,8 | 49,5 | 60   | 70   | 84 | 99  | 117  | 147   |
| Diámetro de bola centro a centro ødp | 15   | 20   | 25   | 30   | 40   | 50   | 60   | 70   | 85 | 100 | 120  | 150   |
| Masa (kg/m)                          | 1    | 1,8  | 2,7  | 3,8  | 6,8  | 10,6 | 15,6 | 21,3 | 32 | 45  | 69,5 | 116,6 |

<sup>\*</sup>El diámetro menor ød debe ser un valor mediante el cual no quede ninguna muesca luego del mecanizado.

#### [Forma del orificio del eje estriado hueco estándar]

Tabla3 muestra la forma del orif cio del eje estriado hueco estándar. Utilice esta tabla cuando deba cubrir ciertos requerimientos, como tubería, cableado, ventilación de aire o reducción de peso.

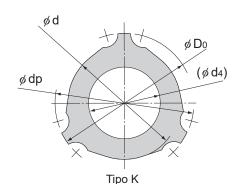


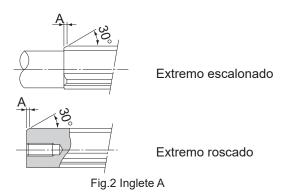

Tabla3 Forma de sección del eje estriado hueco estándar

Unidad: mm

| Diámetro de eje nominal              | 20   | 25   | 30   | 40   | 50   | 60   | 70   | 85   | 100  | 120  | 150  |
|--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Diámetro menor <i>ϕ</i> d            | 15,3 | 19,5 | 22,5 | 31   | 39   | 46,5 | 54,5 | 67   | 81   | 101  | 130  |
| Diámetro mayor <i>φ</i> D₀           | 19,7 | 24,5 | 29,6 | 39,8 | 49,5 | 60   | 70   | 84   | 99   | 117  | 147  |
| Diámetro de bola centro a centro ødp | 20   | 25   | 30   | 40   | 50   | 60   | 70   | 85   | 100  | 120  | 150  |
| Diámetro del orif cio (ø d₄)         | 6    | 8    | 12   | 18   | 24   | 30   | 35   | 45   | 56   | 60   | 80   |
| Masa (kg/m)                          | 1,6  | 2,3  | 2,9  | 4,9  | 7    | 10   | 13,7 | 19,5 | 25,7 | 47,3 | 77,1 |

<sup>\*</sup>El diámetro menor ∮d debe ser un valor mediante el cual no quede ninguna muesca luego del mecanizado.

**THK** A3-69




## [Achaflanado de los extremos del eje estriado]

Para facilitar la inserción del eje estriado en la tuerca estriada, los extremos del eje suelen Achaf anarse con las dimensiones que se indican a continuación salvo que se especif que lo contrario.

#### Achaflanado A

Si los extremos del eje estriado están escalonados, roscados o perforados para un uso específ co, se mecanizan con las dimensiones del inglete A indicadas en Tabla4.



#### Achaflanado B

Si no se utiliza alguno de los extremos del eje estriado, por ejemplo apoyo con ménsula, se mecaniza con las dimensiones del inglete B indicadas en Tabla4.

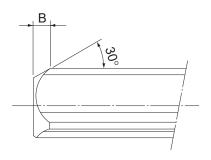



Fig.3 Inglete B

Tabla4 Dimensiones del inglete de los extremos del eje estriado

Unidad: mm

| Diámetro de eje nominal | 15  | 20  | 25  | 30  | 40  | 50  | 60 | 70  | 85 | 100 | 120 | 150 |
|-------------------------|-----|-----|-----|-----|-----|-----|----|-----|----|-----|-----|-----|
| Inglete A               | 1   | 1   | 1,5 | 2,5 | 3   | 3,5 | 5  | 6,5 | 7  | 7   | 7,5 | 8   |
| Inglete B               | 3,5 | 4,5 | 5,5 | 7   | 8,5 | 10  | 13 | 15  | 16 | 17  | 17  | 18  |

Nota) Los ejes estriados con diámetros nominales 6, 8 y 10 se ingletean a C0,5.



## [Longitud del área imperfecta de un eje estriado especial]

Si el área media o el extremo de un eje estriado debe ser más ancho que el diámetro menor  $(\phi d)$ , se requiere un área de eje imperfecta para asegurar una depresión por rectif cación. Tabla5 muestra la relación entre la longitud de la sección incompleta (S) y el diámetro de la brida  $(\phi df)$ . (Esta tabla no aplica para longitudes totales de 1500 mm o mayores. Póngase en contacto con THK para obtener más detalles.)

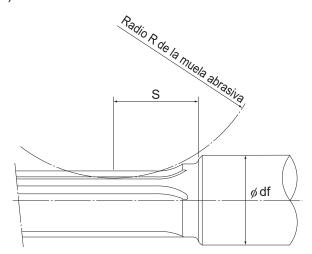



Tabla5 Longitud del área de eje imperfecta: S

Unidad: mm

| Diámetro<br>de la brida <i>∮</i> df | 15 | 20 | 25 | 30 | 35 | 40 | E0 | 60  | 80  | 100 | 120 | 140 | 160 | 180 | 200 |
|-------------------------------------|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Diámetro de eje nominal             | 15 | 20 | 25 | 30 | 35 | 40 | 50 | 60  | 80  | 100 | 120 | 140 | 160 | 160 | 200 |
| 15                                  | 32 | 42 | 49 | 55 | 60 | _  | _  | _   | _   | _   | _   | _   | _   | _   | _   |
| 20                                  | _  | 35 | 43 | 51 | 57 | 62 | _  | _   | _   | _   | _   | _   | _   | _   | _   |
| 25                                  | _  | _  | 51 | 64 | 74 | 82 | 97 | _   | _   | _   | _   | _   | _   | _   | _   |
| 30                                  | _  | _  | _  | 54 | 67 | 76 | 92 | 105 | _   | _   | _   | _   | _   | _   | _   |
| 40                                  | _  | _  | _  | _  | _  | 59 | 80 | 95  | 119 | _   | _   | _   | _   | _   | _   |
| 50                                  | _  | _  | _  | _  | _  | _  | 63 | 83  | 110 | 131 | _   | _   | _   | _   | _   |
| 60                                  | _  | _  | _  | _  | _  | _  | _  | 66  | 100 | 123 | 140 | _   | _   | _   | _   |
| 70                                  | _  | _  | _  | _  | _  | _  | _  | _   | 89  | 115 | 134 | 150 | _   | _   | _   |
| 85                                  | _  | _  | _  | _  | _  | _  | _  | _   | 61  | 98  | 122 | 140 | _   | _   | _   |
| 100                                 | _  | _  | _  | _  | _  | _  |    |     |     | 78  | 108 | 130 | 147 |     | _   |
| 120                                 | _  | _  | _  | _  | _  | _  | _  |     | _   | _   | 81  | 111 | 133 | 150 | _   |
| 150                                 | _  | _  | _  | _  | _  | _  | _  | _   | _   | _   | _   | 64  | 101 | 125 | 144 |

<sup>\*</sup>Esta tabla no aplica para longitudes totales de 1500 mm o mayores. Póngase en contacto con THK para obtener más detalles.

**11出** A3-71



## **Accesorios**

Los modelos de eje nervado LBS y LBST cuentan con una chaveta estándar como se indica en Tabla6.

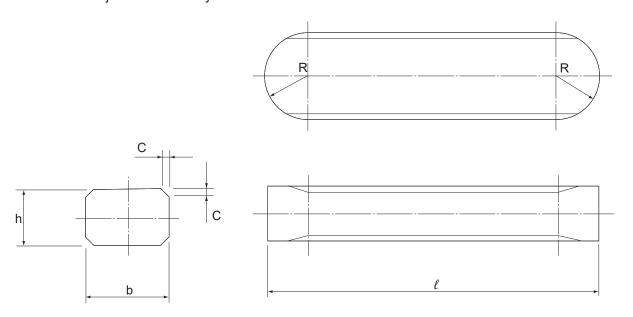



Tabla6 Chavetas estándar para los modelos LBS y LBST

Unidad: mm

| Diámetro de                  |     | Ancho b          |     | Altura h        | L    | ongitud $\ell$      |      |     |
|------------------------------|-----|------------------|-----|-----------------|------|---------------------|------|-----|
| eje nominal                  |     | Tolerancia (p7)  |     | Tolerancia (h9) |      | Tolerancia<br>(h12) | R    | С   |
| LBS 6                        | 2   | +0,016           | 1,3 | 0               | 10   | 0<br>-0,150         | 1    | 0.0 |
| LBS 8                        | 2,5 | +0,006           | 2   | -0,025          | 12,5 | 0                   | 1,25 | 0,3 |
| LBS 10                       | 3   |                  | 2,5 |                 | 17   | -0,180              | 1,5  |     |
| LBS 15                       | 3,5 |                  | 3,5 |                 | 20   | 0                   | 1,75 |     |
| LBS 20<br>LBST 20            | 4   | +0,024<br>+0,012 | 4   | 0 -0,030        | 26   | -0,210              | 2    | 0,5 |
| LBS 25<br>LBST 25            | 5   | 10,012           | 5   | -0,030          | 33   | 0                   | 2,5  |     |
| LBS 30<br>LBST 30            | 7   | +0,030           | 7   |                 | 41   | -0,250              | 3,5  |     |
| LBS 40<br>LBST 40            | 10  | +0,015           | 8   | 0<br>-0,036     | 55   |                     | 5    |     |
| LBS 50<br>LBST 50            | 15  | +0,036           | 10  |                 | 60   | 0<br>-0,300         | 7,5  |     |
| LBST 60<br>LBS 70<br>LBST 70 | 18  | +0,038           | 12  |                 | 68   | -0,300              | 9    |     |
| LBS 85<br>LBST 85            | 20  | 10.042           | 13  | 0<br>-0,043     | 80   | 0<br>-0,350         | 14   | 1,2 |
| LBS 100<br>LBST 100          | 28  | +0,043<br>+0,022 | 18  |                 | 93   | 0                   | 14   |     |
| LBST 120                     | 28  |                  | 18  |                 | 123  | -0,400              | 14   |     |
| LBST 150                     | 32  | +0,051<br>+0,026 | 20  | 0<br>-0,052     | 157  | -0,400              | 16   | 2   |

## A3-72 THK